Code: 22ECMC1T3

I M.Tech - I Semester – Regular Examinations - MARCH - 2023

ADAPTIVE AND SMART ANTENNAS (MICROWAVE & COMMUNICATION ENGINEERING)

Duration: 3 hours

Max. Marks: 60

Note: 1. This paper contains 4 questions from 4 units of Syllabus. Each unit carries 15 marks and have an internal choice of Questions.

2. All parts of Question must be answered in one place.

BL – Blooms Level

CO – Course Outcome

			BL	СО	Max.			
					Marks			
	UNIT-I							
1	a)	What are the features of a smart antenna	L2	CO1	7 M			
		system? Write benefits of smart antennas.						
		Also mention few applications of smart						
		antennas in wireless systems.						
	b)	Write a brief note on MUSIC DOA	L2	CO3	8 M			
		Estimation algorithm.						
OR								
2	a)	How mutual coupling between the antennas	L2	CO1	8 M			
		in an array affect the desired reception of						
		the array? Illustrate the method by which						
		the coupling effect is normally modelled.						
	b)	What are the different types of Smart	L2	CO1	7 M			
		Antenna configurations and also give the						
		architecture of a Smart Antenna System?						
				1				

		UNIT-II			
3	a)	Explain Direct Matrix Inversion method of beamforming.	L2	CO2	7 M
	b)	Describe how the weight vectors of adaptive	L2	CO2	8 M
		array are adjusted by constant modulus algorithm.			
		OR			
4	a)	Explain the concept of adaptive antenna system by considering the case of beam forming.	L2	CO2	7 M
	b)	Explain the following in the context of smart antennas :	L2	CO2	8 M
		a) Minimum Mean Square Error (MMSE)			
		b) Least Mean Square (LMS) algorithms for			
		optimal beamforming.			
		UNIT-III			
5	a)	Explain a planar array smart antenna system	L2	CO3	10 M
		with M x N identical elements that operates			
		at 20GHz for Mobile Ad-Hoc Network			
		considering the mutual coupling effects.			
	b)	Give the overview of Direction-of-arrival	L2	CO3	5 M
		(DOA) Algorithms.			
		OR			
6	a)	Discuss the concept of adaptive beamforming.	L2	CO3	7 M
	b)	Explain Trellis-coded Modulation for adaptive arrays.	L2	CO3	8 M

UNIT-IV							
7	a)	Give an overview on Space time processing.	L2	CO4	7 M		
	b)	Describe discrete space time channel and	L2	CO4	8 M		
		signal models used in M transmitting and N					
		receiving antenna system.					
OR							
8	a)	Give the Single user and multi user data rate	L2	CO4	7 M		
		limits with the appropriate expressions.					
	b)	Explain the principles of Rake receiver in	L2	CO4	8 M		
		detail.					